Smooth words over arbitrary alphabets

نویسندگان

  • Valérie Berthé
  • Srecko Brlek
  • Philippe Choquette
چکیده

Smooth infinite words over Σ = {1, 2} are connected to the Kolakoski word K = 221121 · · ·, defined as the fixpoint of the function ∆ that counts the length of the runs of 1’s and 2’s. In this paper we extend the notion of smooth words to arbitrary alphabets and study some of their combinatorial properties. Using the run-length encoding ∆, every word is represented by a word obtained from the iterations of ∆. In particular we provide a new representation of the infinite Fibonacci word F as an eventually periodic word. On the other hand, the Thue-Morse word is represented by a finite one. Mathematics Subject Classification: 68R15, 37B10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The powers of smooth words over arbitrary 2-letter alphabets

A. Carpi (1993) and A. Lepistö (1993) proved independently that smooth words are cube-free for the alphabet {1, 2}, but nothing is known on whether for the other 2-letter alphabets, smooth words are k-power-free for some suitable positive integer k. This paper establishes the derivative formula (Theorem 10) of the concatenation of two smooth words and power derivative formula of smooth words ov...

متن کامل

Smooth words on 2-letter alphabets having same parity

In this paper, we consider smooth words over 2-letter alphabets {a, b}, where a, b are integers having same parity, with 0 < a < b. We show that all are recurrent and that the closure of the set of factors under reversal holds for odd alphabets only. We provide a linear time algorithm computing the extremal words, w.r.t. lexicographic order. The minimal word is an infinite Lyndon word if and on...

متن کامل

Smooth infinite words over $n$-letter alphabets having same remainder when divided by $n$

Brlek et al. (2008) studied smooth infinite words and established some results on letter frequency, recurrence, reversal and complementation for 2-letter alphabets having same parity. In this paper, we explore smooth infinite words over n-letter alphabet {a1, a2, · · · , an}, where a1 < a2 < · · · < an are positive integers and have same remainder when divided by n. And let ai = n · qi + r, qi ...

متن کامل

Balancedness of Arnoux-Rauzy and Brun Words

We study balancedness properties of words given by the Arnoux-Rauzy and Brun multi-dimensional continued fraction algorithms. We show that almost all Brun words on 3 letters and Arnoux-Rauzy words over arbitrary alphabets are finitely balanced; in particular, boundedness of the strong partial quotients implies balancedness. On the other hand, we provide examples of unbalanced Brun words on 3 le...

متن کامل

Algorithmics of Posets Generated by Words over Partially Commutative Alphabets

It is natural to try to relate partially ordered sets (posets in short) and classes of equivalent words over partially commutative alphabets. Their common graphical representation are Hasse diagrams. We will investigate this relation in detail and propose an efficient on-line algorithm that decompresses a string to Hasse diagram. Further we propose a definition of the canonical representatives ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 341  شماره 

صفحات  -

تاریخ انتشار 2005